NATURAL RESOURCES CONSERVATION SERVICE
CONSERVATION PRACTICE STANDARD

IRRIGATION SYSTEM, SURFACE AND SUBSURFACE

(Ac.)
CODE 443

DEFINITION
A system in which all necessary earthwork, multi-outlet pipelines, and water-control structures have been installed for distribution of water by surface means, such as furrows, borders, and contour levees, or by subsurface means through water table control.

PURPOSE
This practice is applied as part of a resource conservation system to achieve one or more of the following:

- Efficiently convey and distribute irrigation water to the surface point of application without causing excessive water loss, erosion, or water quality impairment.
- Efficiently convey and distribute irrigation water to the subsurface point of application without causing excessive water loss or water quality impairment.
- Apply chemicals and/or nutrients as part of a surface irrigation system in a manner which protects water quality.
- Reduce Energy Use.

CONDITIONS WHERE PRACTICE APPLIES
Areas must be suitable for irrigation and water supplies must be adequate in quantity and quality to make irrigation practical for planned crops to be grown and application methods to be used.

This standard applies to the planning and design of an irrigation water distribution or a chemical, nutrient or manure application system and includes risers and valves.

This standard does not apply to detailed design criteria and construction specifications for individual water control structures or conveyance pipelines, which are found in NRCS Conservation Practice Standards, Structure for Water Control (587) and Irrigation Pipeline (430).

Site conditions for a subsurface irrigation system shall be such that a water-table can be created and maintained to supply water to the crop root zone.

Subsurface irrigation under this standard applies to irrigation through water table control by adding water at water control structures and using perforated pipe, tubing (usually 3 inches or greater diameter), or operation of ditch structures to raise the water table.

This standard does not apply to irrigation systems employing subsurface line-source emitters on buried drip tapes or tubing which is addressed with NRCS Conservation Practice Standard Irrigation System, Microirrigation (441).

CRITERIA
General Criteria Applicable to All Purposes

Conservation irrigation methods. All irrigation systems must be designed as an integral part of an overall plan of conservation land use and treatment for the farm which is based on capabilities of the land and needs of the irrigated area.

All farm irrigation system designs shall be based on the use of sound irrigation water application methods which are suited to site conditions (combination of soil and slope) and crops to be grown. Adapted methods are those methods which will provide efficient use of water without destructive soil erosion or water quality degradation.
Backflow Prevention. If 1) nutrients, chemicals or waste are applied with the irrigation system, and 2) water is supplied by a well, and 3) there is a potential for backflow into the well to occur, a check valve or air gap shall be installed between well pump discharge and the pipeline. Check valves must have a low pressure drain (which opens and drains any remaining liquid onto the ground when the pressure drops) on the bottom of the upstream section. A large volume air vent/vacuum relief valve must be installed upstream of each check valve. If an air gap is used (between the well discharge pipe and the top of a stand pipe) the minimum gap is defined as illustrated in Figure 1. Water delivered by irrigation districts or agencies shall be protected from backflow as specified by the supplier.

![CA NRCS Air Gap Backflow Prevention](image)

Flow Measurement. The producer shall have a method to quantify amounts of water applied to the individual field(s) served by this irrigation system.

Capacity. The irrigation system shall have adequate capacity to meet the intended purpose(s).

If more than one irrigation method will be used on the same field, the system capacity shall be adequate for the method requiring the highest water delivery rate.

Water control. Farm irrigation systems shall include necessary structures required for water control such as: measuring devices, division boxes, checks, turnout pipes, lined ditches, valves, pumps, and gates to control and regulate water for efficient application.

Additional Criteria Applicable to Surface Irrigation Systems

Design of physical components and associated practices shall be in accordance with NRCS Conservation Practice Standards Irrigation Pipeline (430), Irrigation Canal or Lateral (320), Irrigation Field Ditch (388), Structure for Water Control (587), Pumping Plant (533), Tailwater Recovery (447) and other pertinent conservation practice standards.

Capacity. In computing capacity requirements, allowance must be made for reasonable water losses during application and any leaching requirements.

Design application rate. The design rate of application shall be within a range established by the minimum practical application rate for climatic conditions and the maximum rate consistent with the soil water intake rate and conservation practices used on the land.

Water surface elevation. All systems for irrigation by surface methods shall be designed with water surface elevation at field takeout points adequate to provide required flow onto the field surface. A head of at least 4 inches shall be provided.

Location of delivery ditches, buried pipelines or aboveground, multi-outlet distribution pipelines. Delivery ditches or pipelines used for surface irrigation shall be located so irrigation water can be applied uniformly over the entire field without causing erosion. Ditch or pipeline spacing shall be such that irrigation run lengths are not longer than maximums specified in local irrigation guides or those determined acceptable based on field slopes and intake characteristics. If more than one crop is to be grown or more than one method of irrigation used, the ditch or distribution pipeline spacing shall not exceed...
the allowable run length determined for the limiting crop or method.

Risers and Valves. The flow capacity and spacing of risers and valves shall be as specified in local irrigation guides or those determined acceptable based on field slopes, run lengths and intake characteristics.

Irrigation Water Management. An Irrigation Water Management Plan meeting requirements of NRCS Conservation Practice Standard Irrigation Water Management (449) shall be developed for use with this practice.

Aboveground, multi-outlet distribution pipeline.

Working pressure. The maximum working pressure for all aboveground, multi-outlet distribution pipe except for poly irrigation tubing shall be 10 pounds per square inch or 23 feet of head. Appropriate head control appurtenances shall be installed to reduce maximum working pressure to acceptable levels.

For poly irrigation tubing, manufacturer’s recommendations for maximum allowable working pressure shall be followed. If the manufacturer’s recommendations are not available, the hoop stress formula in NRCS National Engineering Handbook (NEH) Part 636, Chapter 52, shall be used to determine maximum working pressure, using a Factor of Safety of 1.5.

Friction losses. For design purposes, friction head losses shall be no less than those computed by the Hazen-Williams equation, using roughness coefficients of C=130 for aluminum pipe and C=150 for plastic or poly irrigation tubing.

Flow velocity. Velocity in the pipeline when operating at system capacity shall not exceed 7 feet per second unless appropriate surge protection is provided.

Capacity. The design capacity of the pipeline shall be sufficient to deliver an adequate irrigation stream to the design area for the planned irrigation method.

Outlet gates. Individual outlet gates shall have capacity at design working pressure to deliver required flow to a point at least 4 inches above the field surface.

Head requirement. The working head shall not be less than 0.5 foot above outlet gates, unless a detailed design or manufacturer’s literature indicates a lower head is adequate to deliver required water to the field.

Where either design working head exceeds 5 feet or stream flows are erosive, an effective method of energy dissipation shall be installed at each gate, or permanent vegetation shall be established and maintained along the pipeline to provide erosion control.

Flushing. A suitable outlet shall be installed at the end of the pipeline for flushing the line free of sediment or other foreign material.

Materials. Pipe shall be aluminum or plastic material certified for above ground use. All fittings and couplers shall equal or exceed the pressure rating of the pipe with which they will be used. They shall be made of material which is recommended by the manufacturer for use with the pipe.

Pipe and appurtenances shall be furnished with a coupling system which is compatible with the selected pipe material.

Rubber gaskets shall be according to the manufacturer's standard design dimensions and tolerances for the pipe material selected. They shall be of such size and shape that, after assembly, adequate compressive force is provided against the spigot and socket to affect a positive seal. The gasket shall be a continuous elastomeric ring and shall be the sole element depended upon to make the joint flexible and watertight.

Minimum wall thickness for aluminum gated pipe shall be 0.050 inches for 6 through 10 inches in diameter, and 0.058 inches for 12 inch diameter pipe.

Corrosion protection shall be provided for aluminum pipe when:

- Conveying water with a copper content exceeding 0.02 parts per million.
- In contact with soil having a resistivity of less than 500 ohm-centimeters.
- In contact with soil having a pH less than 4 or greater than 9.

Minimum wall thickness of PVC gated pipe including consideration of any standard

NRCS, CA
June, 2011
manufacturing tolerances shall be not be less than 0.09 inch. The pressure rating of the pipe shall be 22 pounds per square inch or greater, prior to gate installation.

Minimum wall thickness of poly irrigation tubing shall be 6 mil (0.006 inch).

Related structures. An open ditch supply shall include a permanent water control structure as the inlet to multi-outlet pipe.

When the water supply for poly irrigation tubing is greater than 0.5 foot above the ground, a PVC or aluminum fitting shall be used to convey water between the supply outlet and the poly irrigation tubing at ground level.

Erosion control. The design of farm irrigation systems shall provide for the conveyance and distribution of irrigation water without causing damaging soil erosion. All unlined ditches shall have non-erosive gradients. If water is conveyed on slopes steep enough to cause excessive flow velocities, the irrigation system design shall provide for the installation of structural erosion control measures such as pipe drops, chutes, buried pipelines, and erosion-resistant ditch linings. Polyacrylamide may be applied for erosion control according to NRCS Conservation Practice Standard Anionic Polyacrylamide (PAM) Application (450) in lieu of, or in combination with structural measures.

Seepage control. If site conditions require conveyance of water across excessively permeable soils, the irrigation system design shall provide for pipelines, flumes, or lined ditches, as needed, to prevent excessive seepage losses.

Tailwater and excess runoff removal. The generation of tailwater may be necessary for uniform water application by surface irrigation. Irrigation system designs shall include facilities of adequate capacity for safe removal of irrigation tailwater and storm water runoff. If erosion is a hazard, collection facilities (ditches) constructed for this purpose shall be on non-erosive gradients or stabilized by lining or structural measures. If field elevations do not permit non-erosive disposal of tailwater or excess water by gravity flow, the design shall provide for installation of pumping plants and other needed appurtenant structures. Ditches shall be protected from bank erosion.

If excess water will be reused for irrigation, the system shall include a tailwater reuse system that conforms to NRCS Conservation Practice Standard Irrigation System, Tailwater Recovery (447).

Additional Criteria Applicable to Subsurface Irrigation Systems

Subsurface irrigation systems shall be designed to maintain the water table at predetermined design elevations below the ground surface at all points in the application area.

Feeder ditches or conduits for subsurface irrigation shall be spaced so the variation in depth from the land surface to the water table provides adequate irrigation of the most limiting crop to be grown.

Design of physical components shall be in accordance with NRCS Conservation Practice Standards Subsurface Drain (606), Structure for Water Control (587), Pumping Plant (533), and other pertinent conservation practice standards.

Irrigation system capacity should be determined based on appropriate design application efficiency. Design application efficiency should be no greater than 90 percent for soils with minimal lateral losses and a maximum of 75 percent for all other soils.

Design procedures and guidance for subsurface irrigation system planning and design are provided in NRCS NEH Part 624, Chapter 10.

Soils. Site conditions shall be such that water can move laterally from open ditches or irrigation tiles to form and maintain a water table at the design depth as specified in the irrigation water management plan. Subsurface irrigation shall not be employed unless the irrigated area has a slowly permeable water restrictive layer.

Soil survey information for the irrigated area can be used in preliminary planning. Final design shall be based on on-site lateral hydraulic conductivity measurements or average lateral hydraulic conductivity determined from laboratory tests of each soil layer.
Lateral Spacing. Lateral shall be equally spaced in each subunit. Maximum spacing of irrigation tiles or open ditches shall be no more that one-half the lateral or ditch spacing specified in local drainage guides or no more that one-half the lateral or ditch spacing computed using procedures found in NRCS Part 650, Chapter 14, or NRCS NEH Part 624.

Water Control. Within each managed subunit, the water level control structure shall be of sufficient size to allow adequate flow to meet water requirements of that subunit. The control structures should be set on elevation intervals not to exceed 1 foot.

Water level control structures must be covered or otherwise protected to prevent accidental entry by animals, livestock, machinery or humans.

Irrigation Water Management. An Irrigation Water Management Plan meeting requirements of NRCS Conservation Practice Standard Irrigation Water Management (449) shall be developed for use with this practice.

Additional Criteria Applicable to Application of Chemicals, Nutrients or Manure with a Surface Irrigation System

The installation and operation of an irrigation system for the purpose of chemical, nutrient, or manure application shall comply with all criteria listed under "Additional Criteria Applicable to Surface Irrigation Systems" as well as federal, state and local laws, rules and regulations.

Additionally, surface waters shall be protected from direct application and runoff.

Capacity. The system shall have a design capacity adequate to supply the specified amount of chemical and/or nutrients to the design area in the specified operating period.

Nutrient and Pest Management. Chemicals, fertilizers, waste water, and liquid manure shall be applied in accordance with appropriate NRCS Conservation Practice Standards Nutrient Management (590), Pest Management (595), and Waste Utilization (633).

Additional Criteria Applicable to Reduce Energy Use

Provide analysis to demonstrate reduction of energy use from practice implementation.

Reduction of energy use is calculated as average annual or seasonal energy reduction compared to previous operating conditions.

CONSIDERATIONS

When planning this practice the following items should be considered:

- Effects of soluble salts, nutrients, and/or pesticides on surface and ground water quality.
- Effects of saturated water levels on such soil nutrient processes as plant nitrogen use or denitrification, and root development.
- Effects on the soil biota which will alter nutrient cycling carbon utilization. Water logged and tillage dominated soils become bacteria driven systems which denitrify and ineffectively utilize carbon.
- Effects on aquatic and wildlife communities, wetlands or water-related wildlife habitats, including effects upon pollinator foraging and nesting habitats.
- When planning and designing surface and subsurface irrigation systems: soil texture, intake, and slope are important soil properties which influence installation, performance and soil limitations related to intake rate, seepage, corrosivity, and soil compaction. Designers should refer to soil survey information for the irrigated area during preliminary planning and conduct on-site soil investigations prior to final design.

When designing a **surface irrigation system** the following should be considered:

- To improve surface irrigation performance surface tillage should be modified when possible and other practices which improves soil health should be considered. The destruction of soil structure caused by physical and chemical disturbance can severely impede some soils ability to take in water.
• Impact of salt leaching requirements on system management, capacity, and drainage requirements.

• Effects of erosion and/or movement of sediment and sediment-attached substances carried by runoff including salinity, nutrients, pesticides, seeds and vegetative portions of invasive plants.

• Effect of elevated irrigation tailwater temperatures on downstream receiving waters.

• Irrigation system capacity should be determined based on appropriate design application efficiency. Design application efficiency should be no greater than 90 percent for properly designed level surface irrigation systems and a maximum of 80 percent for graded systems. Guidance for selecting design application efficiencies is provided in NRCS NEH Part 623, and NRCS NEH Part 652.

• Design, evaluation, and simulation models WINSRFR and SURFACE can be very useful tools in finalizing surface system designs.

When designing a subsurface irrigation system the following should be considered:

• Potential benefits of water level control on downstream water quality.

• Potential effects of practice management on lateral seepage.

• Orienting lateral lines along the contours to maximize the area influenced by each water level control structure.

• Soil layers in the water transmission zone (root zone) should have a higher lateral saturated hydraulic conductivity than the vertical saturated hydraulic conductivity of the water restrictive layer. However, if lateral hydraulic conductivity of any single soil layer in the root zone exceeds 10 times that of other layers, lateral seepage may make it difficult to raise the water table to the design depth.

When planning a surface irrigation system employing an above ground, multi-outlet, distribution pipeline the following should be considered:

• Provisions should be made for thrust control at locations subject to pipe movement.

• Good grade control along the pipeline and along the rows is needed to assure uniform water distribution.

• Consider the water source and potential trash types and amounts when designing or selecting inlet screen types and sizes.

• Plan for disposal of used poly irrigation tubing and encourage recycling.

• Anchor poly irrigation tubing when winds may cause it to move.

• PVC Gated pipe with wall thickness less than 0.12 inch will be more flexible making soil support and uniform pipe grade more important if an irrigation supply contains sand. Sand will tend to settle and accumulate in any gated pipe lows.

PLANS AND SPECIFICATIONS

Plans and specifications for surface and subsurface irrigation systems shall be in keeping with this standard and shall describe the requirements for applying this practice to achieve its intended purpose and shall include:

• Location map and plan view of site.

• Detailed construction drawings.

• Construction specifications detailing acceptable materials and installation details.

OPERATION AND MAINTENANCE

An operation and maintenance plan specific to the facilities installed shall be prepared for use by the landowner or operator responsible for operation and maintenance. The plan should provide specific instructions for operating and maintaining facilities to ensure they function properly. The plan shall include provisions to address the following:

• Periodic cleaning and regrading of tailwater collection facilities to maintain
proper drainage, capacity, and functionality.

- Periodic checks and removal of debris as necessary from trash racks and structures to assure proper operation.

- Periodic removal and planned placement of sediment from traps and/or storage facilities to maintain design capacity and efficiency.

- Inspection and testing of all pipeline and pumping plant components and appurtenances.

- Requirements for safe offseason storage and handling of portable pipe.

- Routine maintenance of all mechanical components in accordance with the manufacturer’s recommendations.

- Plan for recycling of synthetic pipe.

- Requirements for anchoring portable pipe where wind is a problem.

- Periodic land smoothing or grading of surface irrigated fields required to maintain the design grade in the direction of flow. Consider developing a schedule and/or method for determining need for regarding.

Additionally for a subsurface irrigation, the plan shall include, as a minimum:

- Water control structure elevation settings by date required to maintain water table at design depth.

- Critical dates and water table target elevations during planned crop growing season.

- Inclusion of specification and locations of all required groundwater observation wells.

REFERENCES

